3.2.16 \(\int \frac {d+e x+f x^2}{(a+b x+c x^2)^{3/2}} \, dx\) [116]

Optimal. Leaf size=111 \[ \frac {2 \left (c \left (2 a e-b \left (d+\frac {a f}{c}\right )\right )-\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {f \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{c^{3/2}} \]

[Out]

f*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(3/2)+2*(c*(2*a*e-b*(d+a*f/c))-(-2*a*c*f+b^2*f-b*c*e+2*
c^2*d)*x)/c/(-4*a*c+b^2)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {1674, 12, 635, 212} \begin {gather*} \frac {2 \left (c \left (2 a e-b \left (\frac {a f}{c}+d\right )\right )-x \left (-2 a c f+b^2 f-b c e+2 c^2 d\right )\right )}{c \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {f \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{c^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2)/(a + b*x + c*x^2)^(3/2),x]

[Out]

(2*(c*(2*a*e - b*(d + (a*f)/c)) - (2*c^2*d - b*c*e + b^2*f - 2*a*c*f)*x))/(c*(b^2 - 4*a*c)*Sqrt[a + b*x + c*x^
2]) + (f*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/c^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1674

Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x + c*
x^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x + c*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b
*x + c*x^2, x], x, 1]}, Simp[(b*f - 2*a*g + (2*c*f - b*g)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)
)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*Q - (
2*p + 3)*(2*c*f - b*g), x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1
]

Rubi steps

\begin {align*} \int \frac {d+e x+f x^2}{\left (a+b x+c x^2\right )^{3/2}} \, dx &=\frac {2 \left (c \left (2 a e-b \left (d+\frac {a f}{c}\right )\right )-\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}-\frac {2 \int -\frac {\left (b^2-4 a c\right ) f}{2 c \sqrt {a+b x+c x^2}} \, dx}{b^2-4 a c}\\ &=\frac {2 \left (c \left (2 a e-b \left (d+\frac {a f}{c}\right )\right )-\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {f \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{c}\\ &=\frac {2 \left (c \left (2 a e-b \left (d+\frac {a f}{c}\right )\right )-\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {(2 f) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{c}\\ &=\frac {2 \left (c \left (2 a e-b \left (d+\frac {a f}{c}\right )\right )-\left (2 c^2 d-b c e+b^2 f-2 a c f\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}+\frac {f \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.55, size = 114, normalized size = 1.03 \begin {gather*} \frac {\frac {2 \sqrt {c} \left (a b f+2 c^2 d x+b^2 f x+b c (d-e x)-2 a c (e+f x)\right )}{\sqrt {a+x (b+c x)}}+\left (b^2-4 a c\right ) f \log \left (c \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )}{c^{3/2} \left (-b^2+4 a c\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*x^2)/(a + b*x + c*x^2)^(3/2),x]

[Out]

((2*Sqrt[c]*(a*b*f + 2*c^2*d*x + b^2*f*x + b*c*(d - e*x) - 2*a*c*(e + f*x)))/Sqrt[a + x*(b + c*x)] + (b^2 - 4*
a*c)*f*Log[c*(b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/(c^(3/2)*(-b^2 + 4*a*c))

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 201, normalized size = 1.81

method result size
default \(f \left (-\frac {x}{c \sqrt {c \,x^{2}+b x +a}}-\frac {b \left (-\frac {1}{c \sqrt {c \,x^{2}+b x +a}}-\frac {b \left (2 c x +b \right )}{c \left (4 a c -b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}\right )}{2 c}+\frac {\ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{c^{\frac {3}{2}}}\right )+e \left (-\frac {1}{c \sqrt {c \,x^{2}+b x +a}}-\frac {b \left (2 c x +b \right )}{c \left (4 a c -b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}\right )+\frac {2 d \left (2 c x +b \right )}{\left (4 a c -b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}\) \(201\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^2+e*x+d)/(c*x^2+b*x+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

f*(-x/c/(c*x^2+b*x+a)^(1/2)-1/2*b/c*(-1/c/(c*x^2+b*x+a)^(1/2)-b/c*(2*c*x+b)/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2))+1
/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))+e*(-1/c/(c*x^2+b*x+a)^(1/2)-b/c*(2*c*x+b)/(4*a*c-b^2)/(c
*x^2+b*x+a)^(1/2))+2*d*(2*c*x+b)/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 216 vs. \(2 (101) = 202\).
time = 3.01, size = 435, normalized size = 3.92 \begin {gather*} \left [\frac {{\left ({\left (b^{2} c - 4 \, a c^{2}\right )} f x^{2} + {\left (b^{3} - 4 \, a b c\right )} f x + {\left (a b^{2} - 4 \, a^{2} c\right )} f\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - 4 \, {\left (b c^{2} d + a b c f + {\left (2 \, c^{3} d + {\left (b^{2} c - 2 \, a c^{2}\right )} f\right )} x - {\left (b c^{2} x + 2 \, a c^{2}\right )} e\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (a b^{2} c^{2} - 4 \, a^{2} c^{3} + {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} x^{2} + {\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} x\right )}}, -\frac {{\left ({\left (b^{2} c - 4 \, a c^{2}\right )} f x^{2} + {\left (b^{3} - 4 \, a b c\right )} f x + {\left (a b^{2} - 4 \, a^{2} c\right )} f\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + 2 \, {\left (b c^{2} d + a b c f + {\left (2 \, c^{3} d + {\left (b^{2} c - 2 \, a c^{2}\right )} f\right )} x - {\left (b c^{2} x + 2 \, a c^{2}\right )} e\right )} \sqrt {c x^{2} + b x + a}}{a b^{2} c^{2} - 4 \, a^{2} c^{3} + {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} x^{2} + {\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*(((b^2*c - 4*a*c^2)*f*x^2 + (b^3 - 4*a*b*c)*f*x + (a*b^2 - 4*a^2*c)*f)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x -
 b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*(b*c^2*d + a*b*c*f + (2*c^3*d + (b^2*c - 2*a*c
^2)*f)*x - (b*c^2*x + 2*a*c^2)*e)*sqrt(c*x^2 + b*x + a))/(a*b^2*c^2 - 4*a^2*c^3 + (b^2*c^3 - 4*a*c^4)*x^2 + (b
^3*c^2 - 4*a*b*c^3)*x), -(((b^2*c - 4*a*c^2)*f*x^2 + (b^3 - 4*a*b*c)*f*x + (a*b^2 - 4*a^2*c)*f)*sqrt(-c)*arcta
n(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) + 2*(b*c^2*d + a*b*c*f + (2*c^3*d +
(b^2*c - 2*a*c^2)*f)*x - (b*c^2*x + 2*a*c^2)*e)*sqrt(c*x^2 + b*x + a))/(a*b^2*c^2 - 4*a^2*c^3 + (b^2*c^3 - 4*a
*c^4)*x^2 + (b^3*c^2 - 4*a*b*c^3)*x)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x + f x^{2}}{\left (a + b x + c x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**2+e*x+d)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral((d + e*x + f*x**2)/(a + b*x + c*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 6.44, size = 122, normalized size = 1.10 \begin {gather*} -\frac {2 \, {\left (\frac {{\left (2 \, c^{2} d + b^{2} f - 2 \, a c f - b c e\right )} x}{b^{2} c - 4 \, a c^{2}} + \frac {b c d + a b f - 2 \, a c e}{b^{2} c - 4 \, a c^{2}}\right )}}{\sqrt {c x^{2} + b x + a}} - \frac {f \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} - b \right |}\right )}{c^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

-2*((2*c^2*d + b^2*f - 2*a*c*f - b*c*e)*x/(b^2*c - 4*a*c^2) + (b*c*d + a*b*f - 2*a*c*e)/(b^2*c - 4*a*c^2))/sqr
t(c*x^2 + b*x + a) - f*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c) - b))/c^(3/2)

________________________________________________________________________________________

Mupad [B]
time = 3.73, size = 143, normalized size = 1.29 \begin {gather*} \frac {f\,\ln \left (\frac {\frac {b}{2}+c\,x}{\sqrt {c}}+\sqrt {c\,x^2+b\,x+a}\right )}{c^{3/2}}-\frac {e\,\left (4\,a+2\,b\,x\right )}{\left (4\,a\,c-b^2\right )\,\sqrt {c\,x^2+b\,x+a}}+\frac {d\,\left (\frac {b}{2}+c\,x\right )}{\left (a\,c-\frac {b^2}{4}\right )\,\sqrt {c\,x^2+b\,x+a}}+\frac {f\,\left (\frac {a\,b}{2}-x\,\left (a\,c-\frac {b^2}{2}\right )\right )}{c\,\left (a\,c-\frac {b^2}{4}\right )\,\sqrt {c\,x^2+b\,x+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x + f*x^2)/(a + b*x + c*x^2)^(3/2),x)

[Out]

(f*log((b/2 + c*x)/c^(1/2) + (a + b*x + c*x^2)^(1/2)))/c^(3/2) - (e*(4*a + 2*b*x))/((4*a*c - b^2)*(a + b*x + c
*x^2)^(1/2)) + (d*(b/2 + c*x))/((a*c - b^2/4)*(a + b*x + c*x^2)^(1/2)) + (f*((a*b)/2 - x*(a*c - b^2/2)))/(c*(a
*c - b^2/4)*(a + b*x + c*x^2)^(1/2))

________________________________________________________________________________________